
Econometrics I
Lecture 4: Inference and Standard Errors

Paul T. Scott
NYU Stern

Fall 2021

Paul T. Scott NYU Stern L4 - Inference and Standard Errors Fall 2021 1 / 56



Hypothesis testing

We are often interested in testing theories, or testing hypotheses
about the values of certain parameters

Simplest example: testing whether mean of a variable µx ≡ E [X ] is
different from a particular value:

H0 : µx = a
H1 : µx 6= a

A hypothesis test typically involves a null hypothesis and alternative
hypothesis. The alternative hypothesis could also be about a
particular value (H1 : µx = b, or a one-sided rejection of the null
(H1 : µx > a).

Paul T. Scott NYU Stern L4 - Inference and Standard Errors Fall 2021 2 / 56



Review: z test

If Xi is i.i.d. normal with known variance σ2, then

X ∼ N
(
µx ,σ2/n

)
In this case, we know the distribution of our estimate X . We can test

H0 : µx = a H1 : µx 6= a

using a z test.

We construct the test statistic

z =
X – a

n–1/2σ

which under the null hypothesis has the standard normal distribution:

z ∼ N (0, 1)
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Level and Size of Test

The size (or level) of a test is the probability of rejection if the null
hypothesis is true. The size is the rate of false positives or type I
errors.

When hypothesis testing, we make it hard to reject the null
hypothesis. We typically choose the size of the test to be small (most
commonly, .01 or .05).
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Source: xkcd.com
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Power of Test

We typically want to reject only for the outcomes that are most likely
under the null hypothesis (or relatively more likely under the
alternative hypothesis than the null). For the z test above, we reject
only in the tails of the normal distribution. See: Neyman-Pearson
Lemma.

Choosing the rejection region appropriately maximizes the test’s
power, the probability of rejecting the null hypothesis when it is
indeed false. Power is often harder to quantify and not something we
typically choose. Power is one minus the rate of type II errors (false
negatives), or failures to reject the null hypothesis when it is false.
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Rejection Region and Power
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Suppose X̄ is normally
distributed with Var

(
X̄
)

= 1

We want to test

H0 : µx = 1
H1 : µx = 4

The blue and red lines are the
PDF of x̄ under the null and
alternative hypotheses,
respectively

The shaded region is the
rejection region with level
α = .05 that maximizes power.
Note that this is for X̄ ≥ 2.65.
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Rejection Region and Power
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Note that the rejection region is
the region where the PDF of the
alternative hypothesis is high
relative to the null hypothesis.

The maximum power test with
level .05 is the test that rejects
for the 5% of the null-hypothesis
PDF in which H1’s likelihood
(probability density) is highest
relative to H0’s.

We often take for granted that
rejection regions are in the tails
of the null-hypothesis PDF;
this is why.
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Review: t Statistics

Let’s return to testing the value of a normally distributed random
variable’s mean, but now let’s suppose that σ2 is not known (which is
typically the case).

Our test statistic instead is

t =
X – a

n–1/2s

where

s =

√√√√ 1

n – 1

n∑
i=1

(
Xi – X

)
Here, t has a t-distribution with n – 1 degrees of freedom.
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Testing Paradigm

We focus on different versions of Wald tests, which are based on test
statistics that are (approximately) normally distributed.

Other paradigms:
I Likelihood Ratio tests and goodness-of-fit-based tests. The idea here is

to compare how well different models fit the data.
I Lagrange multiplier test: for example, testing whether residuals from a

restricted model are correlated with excluded variables.
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Motivating Small Sample t-Tests

Last week we learned that if N is large then,

bOLS
a∼ N (β, Var(bOLS ))

I This hinges on knowing Var(bOLS )
I We rarely know this in practice — we estimate it instead
I Like testing the mean of a normal random variable, estimating the

variance of the test statistic puts us in a t-test situation.
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t-Statistics for OLS Parameters

bOLS ,k – βk√
s2 (X′X)–1kk

∼ tn–K

where K is the number of parameters, s2 is the estimator of the
variance of ε, and (

X′X
)–1
kk

refers to the kth diagonal element of
(
X′X

)–1
.

Note that the denominator of the above formula is the standard error
for the kth estimated parameter bOLS ,k .
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The t-Distribution

Similar to the N (0, 1) but parametrized by degrees of freedom

The tails are fatter but become N (0, 1) as df go to ∞
The df will be n – 1 for a one variable regression and the cutoff values
can be found in the book
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Example of Reading a t-Table

Example of a table of critical values for t distribution from a textbook:

Degrees of Freedom .10 .05

1 6.31 12.71
2 2.92 4.30
...

28 1.70 2.05
...
∞ 1.65 1.96

If N were very large we would use the N (0, 1) approximation which is
exactly the case that df =∞
If N <∞ we can use a table like this, or a computer does it for us

Example: If N = 30, K = 2, then df = N – K = 28 the 5% cutoff
value is 2.05
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An Example (Bivariate Regression)

Suppose I have the following estimated parameters on 30 observations

b1 =1.00

N∑
i=1

(Xi – X̄ )2 =14

N∑
i=1

e2i =100
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An Example (Bivariate Regression)

Suppose I have the following estimated parameters on 30 observations

b1 =1.00

N∑
i=1

(Xi – X̄ )2 =14

N∑
i=1

e2i =100

1. First, state the hypothesis:

H0 :β1 = 0

H1 :β1 6= 0
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An Example (Bivariate Regression)

Suppose I have the following estimated parameters on 30 observations

b1 =1.00

N∑
i=1

(Xi – X̄ )2 =14

N∑
i=1

e2i =100

2. Second, calculate s2:

s2 =
1

N – 2

N∑
i=1

(ei )
2 = 3.45
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An Example (Bivariate Regression)

Suppose I have the following estimated parameters on 30 observations

b1 =1.00

N∑
i=1

(Xi – X̄ )2 =14

N∑
i=1

e2i =100

3. Third, calculate t:

t =
β̂1 – β1(H0)√

s2/
∑N

i=1(Xi – X̄ )2
=

1.00√
3.45/14

= 2.015
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An Example (Bivariate Regression)

Suppose I have the following estimated parameters on 30 observations

b1 =1.00

N∑
i=1

(Xi – X̄ )2 =14

N∑
i=1

e2i =100

4. Compare to a critical value
I In this case because df = 28 we DO NOT REJECT the null
I Note: K = 2 assuming we also have a constant term.
I If we had used the N (0, 1) we would narrowly reject the null
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An Example (Bivariate Regression)

Suppose I have the following estimated parameters on 30 observations

b1 =1.00

N∑
i=1

(Xi – X̄ )2 =14

N∑
i=1

e2i =100

5. We can also use the critical values to construct a confidence interval

CI = β̂ ± 2.05× SE (β̂) = 1.00± 2.05×
√

3.45/14 = [–.017, 2.017]

I Note that we use the t-distribution critical values!!
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Joint hypotheses

Sometimes we want to test multiple parameters:

H0 : βexp = 0 AND βexp2 = 0

H1 : βexp 6= 0 OR βexp2 6= 0

Note that we do not want to do two separate t-tests for this
hypothesis.
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Illustration of Two t-Tests Failing

Suppose t-statistics are –1 and –2. Do we reject null?
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Illustration of Two t-Tests Failing

Suppose t-statistics are –1 and –2. Do we reject null?

If the t’s are independent this is the picture:
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The circle contains 95% of the
probability for two independent
t-statistics; the area outside it is
the rejection rejoin for the joint
t-test.

The dashed lines are the
rejection regions for each of the
individual t-tests. (5% level)

Even though naively would
reject, in actuality not significant

What happens with correlated
normal RVs?
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Bivariate normal: correlated and independent
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T-Tests with correlation

If the t’s are correlated this is the picture:
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Now, the area outside the ellipse
is the rejection region for the
joint t-test (5% level)

The dashed lines are the
rejection regions for each of the
individual t-tests. (5% level)

Now, notice that even with
t1 = –2, t2 = –2, which would
be a rejection according to each
of the individual tests, is not a
rejection of the joint test.
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Correcting for Correlation: The F-Test

The issues we have are:

1 Testing a joint hypothesis with independent tests will not give the
correct type 1 error

2 Correlated β̂’s make things very messy

How can we solve this?

First get a statistic that combines both hypotheses
I Should be “big” when either t1 or t2 or both are big
I Should include both t’s

Natural candidate:
F = t21 + t22

I Always positive and only big when t’s are big
I If t1 and t2 are independent normals, then F ∼ χ22
I If we divide by 2 we have F2 distribution
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Correcting for Correlation: The F-Test, Cont’d

Our candidate test:
1

2
× (t21 + t22 )

Has a well understood distribution when t’s are independent

If not, we can rotate the t’s so they are
I Non-matrix formula (for 2 parameters):

F =
1

2
×

t21 + t22 – 2ρt1,t2t1t2
1 – ρt1,t2

I Matrix version (for k parameters):

β̂ – β ∼ N
(

0, Σ
β̂

)
⇒ Σ

–1/2

β̂
×
(
β̂ – β

)
∼ N (0, I )

This implies,
(β̂ – β)′Σ–1(β̂ – β)/k ∼ χ2k/k = Fk
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What is the F Distribution?

New test statistic:

F =
1

2
×

t21 + t22 – 2ρt1,t2t1t2
1 – ρt1,t2

Almost always requires a computer

Ugly formula that follows a simple distribution

In general, for q restrictions, we will calculate the F statistic and it
will be distributed Fq (Fq,∞ sometimes)

Related to take the sum of squared normal random variables

Critical values will depend on the number of restrictions

Fun fact: for 1 restriction F = t2
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Critical Values of the F
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The F Distribution for 3 Restrictions

The distribution looks different than the t

But the testing procedure is the same!
I Find a critical value so that P(F > cv) = .05
I If F is large given the null then null is unlikely to be true
I Critical value depends on number of restrictions, q
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F-tests: General Definition

We are interested in testing the following linear restrictions on the
parameters:

Rβ = q,

where usually q = 0, but not always.

What would R and q be if we were testing whether two slopes were
equal?

The F statistic (or feasible Wald statistic):

F =
(Rb – q)′

{
R
[
s2
(
X′X

)–1]
R′
}–1

(Rb – q)

J
,

which has a F [J, n – K ] distribution, where J is the number of rows of
R (the number of restrictions).
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Non-Nested Models

We have considered only nested models thus far. When testing

Rβ = q,

we are testing a restricted linear model against alternative hypothesis
of an unrestricted linear model, which includes the restricted model
as a special case.

Sometimes we want to compare non-nested models, which brings us to
model selection. The main idea is to balance the model’s goodness of
fit and number of parameters: see adjusted R2, Akaike Information
Criterion, Bayesian Information Criterion. Machine learning
approaches typically try to compare models by directly assessing
out-of-sample performance. More on this stuff next semester.
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OLS standard errors

A useful identity for linear algebra:

Var(aZ) = a2 Var(Z)

Var(AZ) = A Var(Z)A′

Since bOLS = (X′X)–1X′y,

Var(bOLS |X) = (X′X)–1X′ Var(y|X)X(X′X)–1

Recalling that Var(y|X) = Var(ε|X),

Var(bOLS |X) = (X′X)–1X′ Var(ε|X)X(X′X)–1
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OLS standard errors

Var(bOLS |X) = (X′X)–1X′ Var(ε|X)X(X′X)–1

With homoscedasticity, Var(ε|X) = σ2I, and this simplifies to

Var(bOLS |X) = σ2(X′X)–1

Without homoscedasticity, we can still use the “sandwich” formula
above.

Paul T. Scott NYU Stern L4 - Inference and Standard Errors Fall 2021 27 / 56



Example: Engel Curves

Engel curves refer to the relationship between a household’s
expenditure share on a good and income (or total expenditure).

Engel curves for food are typically downward sloping – as total
expenditure of a household increases, the proportion of its expenditure
dedicated to food falls.

I Expenditure on food still rises as total expenditure rises, but less than
proportionally, so that food’s expenditure share falls.

Paul T. Scott NYU Stern L4 - Inference and Standard Errors Fall 2021 28 / 56



Example: Engel Curves

Engel curves refer to the relationship between a household’s
expenditure share on a good and income (or total expenditure).

Engel curves for food are typically downward sloping – as total
expenditure of a household increases, the proportion of its expenditure
dedicated to food falls.

I Expenditure on food still rises as total expenditure rises, but less than
proportionally, so that food’s expenditure share falls.

Paul T. Scott NYU Stern L4 - Inference and Standard Errors Fall 2021 29 / 56



Food Engel Curves
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Data source: BLS Consumer Expenditure Survey data

Paul T. Scott NYU Stern L4 - Inference and Standard Errors Fall 2021 30 / 56



Heteroscedasticity Robust Standard Errors I

It is common to compute Eicker-Huber-White standard errors, which
is a different estimator of Σ that is consistent even if each observation
has a different variance σ2i :(

X′X
)–1 (

X′diag
(

e21 , e22 , . . . , e2n

)
X
) (

X′X
)–1

Statistical software typically makes it easy to use this estimator for Σ
instead of the standard homoscedastic estimator.
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Heteroscedasticity Robust Standard Errors II

We can rewrite the heteroscedasticity-consistent (or
heteroscedasticity-robust) standard error estimator as:

n–1
(

n–1X′X
)–1 (

n–1X′diag
(

e21 , e22 , . . . , e2n

)
X
)(

n–1X′X
)–1

,

where the middle piece of this “sandwich” estimator can be written as

n–1
∑
i

xix
′
ie

2
i

Notice that this is the sample analog of V [xiεi ]. What’s going on with
the robust standard error formula is we’re constructing an estimate of

n–1E
[
xix

′
i

]–1
V [xiεi ] E

[
xix

′
i

]–1
.

This is known as a sandwich estimator of variance.
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Doing a Heteroscedastic F-Test in R

Let us revisit the wage equation:

log(Wagei ) = β0 + β1Agei + β2Age2i + β3Educi + εi

New question: does experience/age matter at all?

New hypothesis:

H0 : β1 = 0 and β2 = 0

Ha : β1 6= 0 or β2 6= 0

How do we test in R using heteroscedastic robust standard errors?

We need a new command:

First, we need the car package
I As a reminder, to install packages use the command:

install.packages("car")

I As a reminder, to load a package use the command: library(car)
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Doing a Heteroscedastic F-Test in R, Cont’d

Let us revisit the wage equation:

log(Wagei ) = β0 + β1Agei + β2Age2i + β3Educi + εi

Red box is the name of the model

Command without boxes:

linearHypothesis(m1, c("age =0", "age2=0"), vcov = vcovHC(m1, type = "HC1"))
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Let us revisit the wage equation:

log(Wagei ) = β0 + β1Agei + β2Age2i + β3Educi + εi

Red box is the name of the model

Green box is the list of hypotheses:
I List enclosed by the c() command
I Each restriction is enclosed in quotes,

one equal sign and uses the names of the
variables from the model

I Don’t forget to separate commands with

commas

Purple box is the variance-covariance

argument

Command without boxes:

linearHypothesis(m1, c("age =0", "age2=0"), vcov = vcovHC(m1, type = "HC1"))
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Outliers

Outliers refer to observations that are “far away” from the rest of the
data. They can be due to errors in the data. There is no standard
formal definition.

What to do? Greene:“It is difficult to draw firm general conclusions...
It remains likely that in very small samples, some caution and close
scrutiny of the data are called for.” I’d say that’s true even in large
samples, but there isn’t a generally accepted way of quantifying what
counts as appropriate “caution and close scrutiny.”

Paul T. Scott NYU Stern L4 - Inference and Standard Errors Fall 2021 35 / 56



Removing Outliers?

Removing extreme outliers (in x) from datasets is often considered
good practice. But we should be mindful about why as dropping
observations creates the potential for manipulation.

Sometimes extreme outliers are just errors, in which case they should
almost obviously be dropped.

Even if they aren’t errors, they may reflect a different mode in the
data generating process. They may require a different or more general
model to account for them properly. Consider the justificaiton of a
linear model based on Taylor’s theorem (local linear approximation).
With such a justification for your modeling strategy, it would not
make sense to include an outlier in x .

It’s important to be transparent about how dropped outliers affect
results.
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Outliers and Leverage

One way to find outliers is to calculate the leverage of each
observation i . We begin with the hat matrix:

P = X(X′X)–1X′

and consider the diagonal elements, which are labeled hii

hii = xi‘(X′X)–1xi

This tells us how influential an observation is in our estimate of bOLS .
Particularly important for {0, 1} dummy variables with uneven groups.
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Leave One Out Regression

This is sometimes called the Jackknife

Sometimes it is helpful to know what would happen if we omitted a
single observation i

Turns out we don’t need to run N regressions

b–i = (X′
–iX–i )

–1X′
–iy–i

= bOLS – (X′X)–1xi ẽi where ẽi = (1 – hii )
–1ei

ẽi has the interpretation of the LOO prediction error.

high leverage observations move bOLS a lot.
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Heteroskedasticity Consistent (HC) Variance Estimates

What we need is a consistent estimator for e2i .

VHC0
OLS = (X′X)–1

 N∑
i=1

xix
′
ie

2
i

 (X′X)–1

VHC1
OLS = (X′X)–1

 N∑
i=1

xix
′
ie

2
i

 (X′X)–1 ·
( n

n – k

)
Could use ẽi instead of ei for a better estimate

VHC2
OLS = (X′X)–1

 N∑
i=1

(1 – hii )
–1xix

′
ie

2
i

 (X′X)–1

VHC3
OLS = (X′X)–1

 N∑
i=1

(1 – hii )
–2xix

′
ie

2
i

 (X′X)–1

Paul T. Scott NYU Stern L4 - Inference and Standard Errors Fall 2021 39 / 56



Heteroskedasticity Consistent (HC) Variance Estimates

We know that VHC3
OLS > VHC2

OLS > VHC0
OLS because (1 – hii ) < 1.

Stata uses HC 1 as the default and it is what most people refer to
when they say robust standard errors. These are the
Eicher-Huber-White SE’s.

Note: failure to correct for heteroscedasticity can lead to size
distortions (a rate of type I errors that differs from what you intend).

HC 3 are the most conservative and also place the most weight on
potential outliers.
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Heteroskedasticity Consistent (HC) Variance Estimates

To read about SE’s in estimatr:
https://declaredesign.org/r/estimatr/articles/mathematical-notes.html

dat <- data.frame(X = matrix(rnorm (2000*5), 2000), y = rnorm (2000))

hc0 <-lm_robust(y ~ ., data = dat , se_type="HC0")$std.error
hc1 <-lm_robust(y ~ ., data = dat , se_type="HC1")$std.error
hc2 <-lm_robust(y ~ ., data = dat , se_type="HC2")$std.error
hc3 <-lm_robust(y ~ ., data = dat , se_type="HC3")$std.error
all(hc2 > hc0 )

[1] TRUE

all(hc3 > hc2 )

[1] TRUE
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Heteroscedasticity vs. Correlation

Recall that we defined the homoscedasticity assumption as:

Var (ε) = σ2I

this assumption has two aspects:
1 The disturbance for each observation has the same variance
2 Imposing zero correlation between disturbances for different

observations

The terminology can be misleading here, because what people refer to
as “heteroscedasticity-robust” standard errors (the variance estimators
on the previous slide) are robust to violations of 1 but not 2.

We need to do a bit more to estimate standard errors in a way that is
robust to correlated data.
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Correlation I

The baseline assumptions of the linear regression framework imply
that the disturbances are uncorrelated across observations. There are
many ways for this to be violated.

I Example 1: we might have county-level data for a regression and be
concerned that different counties within a given state have correlated
disturbances because all counties are subject to the same (unobserved)
state-level policies.

I Example 2: time series data (asset prices), and we are worried that
some unobserved factors within the disturbances are serially correlated

I Example 3: county level data again, and we are worried about
geographically correlated factors such as weather.
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Correlation II

Different correlation patterns call for different estimators of Σ, the variance
of bOLS Some common alternatives to the no-correlation baseline:

1 Clustered standard errors, when there is correlation between
observations within well-defined groups, but no correlation between
observations in different groups.

2 Newey-West standard errors (and extensions) to deal with serial
correlation in time series data.

3 Conley-Newey-West standard errors that allow for correlation in
multiple dimensions (especially popular in the context of spatially
explicit models).
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Clustering I

Suppose data are organized into distinct groups g = 1, 2, . . . , G . Let
g (i) be the group identity of observation i .

I e.g., with county-level data, we have g (Manhattan) = NY .

We assume E
[
εiεj

]
= 0 as long as g (i) 6= g (j), and we do not

restrict the correlation E
[
εiεj

]
for observations within the same

group.

Intuition: the linear regression framework with no correlation in
observations will overstate the precision of our estimates. If we add
another observation within a cluster, and that observation is highly
correlated with the other observations, it’s not actually as good as
adding another independent observation.
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Clustering II

Recall the sandwich formula for standard errors:

n–1E
[
xix

′
i

]–1
V [xiεi ] E

[
xix

′
i

]–1
.

The estimator for the middle part without clustering was

V [xiεi ] = n–1
∑
i

xix
′
ie

2
i

With clustering, it will be

Vclu = n–1
n∑

i=1

n∑
j=1

xix
′
jeiej I [g (i) == g (j)]

where the I function is 1 when i , j come from the same group and zero
otherwise.
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Clustering III

The cluster-robust estimate of standard errors will be consistent as the
number of groups gets large.

Note that this estimator adds extra terms (covariance terms) to the
estimate of variance, so this is going to make standard errors larger as
long as covariances E

[
εiεj

]
are positive.

Thus, if standard formulas are used in the presence of
cluster-correlated disturbances, standard errors will be too small.

Statistical software packages typically make it easy to compute
cluster-robust errors.

Clustering often makes a huge difference in standard errors.
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Correlation III

Consider the cluster-robust estimator of the “meat” part of the sandwich
estimator:

Vclu = n–1
n∑

i=1

n∑
j=1

xix
′
jeiej I [g (i) == g (j)]

For Conley-Newey-West standard errors (where there is correlation between
“nearby” observations), procedure is similar.

The difference is that instead of the 1/0 indicator function for I, we will
have a weighting (or kernel) function which takes on values ≈ 1 for
“nearby” observations and goes to zero for observations that are far apart.
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Clustered SE’s

V̂
CR1
OLS =

(
X′X

)–1 G∑
g=1

X′
g eg e′gXg

(X′X
)–1

V̂
CR3
OLS =

(
X′X

)–1 G∑
g=1

X′
g ẽg ẽ′gXg

(X′X
)–1

Can replace eg → ẽg for leave-one out like HC 3 (these are called
CR3).
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Clustering in R

lm_robust(y~ x1 + x2 , data=df , se_type="CR0", cluster=group_id )

lm_robust(y~ x1 + x2 , data=df , se_type="CR2", cluster=group_id )

lm_robust(y~ x1 + x2 , data=df , se_type="CR1", cluster=group_id )
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Bootstrap I

Another approach to estimating the standard errors of bOLS is the
bootstrap

The basic idea:
1 Simulate a new data set by sampling (with replacement) from the

original data set
2 Estimate bOLS for the new data set.
3 Repeat lots of times, resulting in a bunch of different estimates of bOLS
4 Look at the variance of the bOLS estimates across the various simulated

data sets. This is your estimate of Σ.
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Bootstrap II

The bootstrap’s main appeal is that it can provide a better
finite-sample approximation of the distribution of the parameter
estimates.

I Note that the Eicker-Huber-White standard errors estimates are
consistent, but not generally unbiased in finite samples

I The bootstrap is probably worth trying if you’re ever working with
non-linear estimators (which can be consistent but are generally not
unbiased in finite samples).

Also, it can potentially deliver good estimates of standard errors even
with correlated errors, but this depends on the version of the
bootstrap (see block bootstrap). Exploring formally the conditions
under which the bootstrap works well is beyond our scope.
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Confidence Intervals I

Note that if
b ∼ N (β, Σ)) ,

then
bk ∼ N (βk , Σkk) ,

and

Pr
[
bk – z(1–α/2)

√
Σkk ≤ βk ≤ bk + z(1–α/2)

√
Σkk

]
= α

where z(1–α/2) is the value such that the CDF of the standard normal
distribution is 1 – α/2.
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Confidence Intervals II

Similarly, when
bk – βk√

Σ̂kk

∼ tn–K

because the variance Σkk has to be estimated, then

Pr

[
bk – t(1–α/2),n–K

√
Σ̂kk ≤ βk ≤ bk + t(1–α/2),n–K

√
Σ̂kk

]
= α

where t(1–α/2),n–K is the value such that the CDF of the
t-distribution with n – K degrees of freedom is 1 – α/2.
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Confidence Intervals III

We define the 1 – α confidence interval for bk as(
bk – t(1–α/2),n–K

√
Σ̂kk , bk + t(1–α/2),n–K

√
Σ̂kk

)

Note that this confidence interval is a function of the data – the end
points of the confidence interval are statistics and therefore random
variables in their own right.

Defining the confidence interval in this way, the probability that the
confidence interval contains the true parameter is 1 – α (if the
asymptotic distribution of the estimator is taken as the true
distribution). That is, if α = .05, this is called a 95% confidence
interval, and there is a 95% chance it will contain the true parameter.
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Summary

Linear regression theory gives us formulas for estimating Var (bOLS )

We can use that variance estimator to test hypotheses about
parameters (using t-Tests and f-Tests) as well as construct confidence
intervals.

When the baseline assumptions of the linear regression model are
violated (due to correlation or heteroscedasticity), we need to use
somewhat more complex formulas to estimate Var (bOLS ).
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